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INTRODUCTION 

Exponentially weighted Galerkin-finite element,2'5»6 collocation,  and 

exponentially fitted finite difference1»5»7 schemes have become popular and 

effective numerical methods for solving convection dominated convection- 

diffusion problems.  They avoid the spurious mesh oscillations found in 

centered schemes at high values of the cell Reynolds or Peclet numbers and 

reduce the effects of numerical diffusion found in upwind finite difference 

schemes. 

The exponential schemes all require evaluating the function 

C = f(z) := coth z - 1/z 

in order to obtain their optimal accuracy.  For example, the exponentially 

fitted Galerkin-finite element method for the two-point boundary value problem 

s _-- - c(x) -- = 0  ,  0 < x < 1  ,  u(0) = A,  u(l) = B     (2) 
dx2       dx 

on a uniform grid of spacing h = 1/N is given by, (cf, e.g., Hughes ) 

(e/h^CUi-i - ZUi + Ui+i) - (l/2h)[(l+5i)c(x1)(U1-Ui-1) 

+ (l-5i)c(xi+i)(U1+1-Ui)] = 0  ,  i = 1,2,...,N-1        (3a) 

U0 = A  ,  UN = B (3b,c) 

Here U^ denotes the numerical approximation of u(ih), i = 0,1,...,N, x^ is 

some point on (xj-i, Xi), e.g., the center of the subinterval, and ?! can be 

*References are listed at the end of this report. 



interpreted as a function evaluation point In a one-point quadrature rule (cf. 

Hughes6).  The choice 

?1 - f(Pi/2) (4) 

where p^ is the cell Reynolds or Peclet number 

Pi = c(xi)h/e (5) 

Is known to give the exact solution of Eq. (2) for all p^ when c Is a constant 

(cf. Christie et al.2). 

The function f(z) Is relatively expensive to evaluate because of the 

exponential functions and Is usually replaced by the "doubly asymptotic" 

approximation 

z/3  ,  |z| < 3 
g  =  fA(z) := (6) 

sgn(z), |z| >  3 

The function fA.(z) provides an 0(z3) approximation to f(z) when |z| << 1 and 

an 0(l/z) approximation when |z| >> 1.  Furthermore, when Eq. (6) is used in 

Eq. (3) and c(x) is smooth, U^ provides an OCp1*) approximation when 

p:= max I p^l (7) 
KKN 

is small and an 0(l/p) approximation when p is large. 

Thus, f^Cz) provides a good approximation of f(z) when z is either small 

or large, but has large errors when z = 0(1) (cf. Figure 1).  The largest 

difference between f(z) and f^C2) is 0.328 and it occurs at z = 3.  This 

corresponds to a value of p = 6 and since cell Reynolds numbers in this 

vicinity are reasonably common in computation It behooves us to find a better 

approximation for f(z) than f^C2) when z = 0(1). 



In this note, we consider rational function approximations having the 

form 
8(1 + a|z|) 

5 = fR(z) := 5 (8^ 
3 + e|z| + az2 

for appropriate choices of a and 3.  This approximation will be considered 

successful if it provides better accuracy than f^C2) and is still less 

expensive to evaluate than f(z). 

Like f^(z), we see that fR(z) correctly approximates f(z) as z -»■ 0 and as 

|z| > o" for all values of 3 and all a * 0.  The maximum difference between 

f(z) and fR(z) is about 0.0115 for the nearly optimal values of a = 0.6 and 3 

= 1.38 (cf. Figure 1).  Furthermore, when f, f^, and f^ were evaluated for 

1000 values of z e [0,100] we found that fR took 35 percent less time to 

evaluate than f while f^ took 49 percent less time than f.  The approximation 

fR also provided greater accuracy than f^ for the computed solution 11^,1= 

0,1,...,N, of two model problems.  The savings in time and improvement in 

accuracy are significant and may be especially important in multi-dimensional 

problems.  As previously noted, the greatest gains occur when p^ = 0(1) and 

c(x) is smooth. 

RATIONAL FUNCTION APPROXIMATION 

We will want to restrict a and 3 in Eq. (8) so that our approximation 

fR(z) satisfies the following three conditions: 

i.   fR(z) should be a good approximation of f(z) when z is small and 

large, although not necessarily as good as f^(z). 
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Figure 1. Optimal, doubly asymptotic, rational, and critical choices of 
5 = f(z) given by equations (1), (6), (8), and ^ = 1 - 1/z, 
respectively. 
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ii.  The solution U^ of Eq. (3) should be oscillation free.  Christie et 

al.2 have shown that this will be the case when 

z > 0  ,  ? > 1 - 1/z 

z < 0  ,  ? < -(1 - l/z) (9) 

z = 0  ,  all ? 

iii.  Since f(z) is a monotonically increasing function of z we ask that 

dfR(z) 
—-— > 0  , all  z (10) 

dz 

Since both f(z) and f^Cz) are odd functions of z it suffices to enforce 

these conditions for z  >  0.     We shall see that enough flexibility remains for 

us to select a and 3 to improve accuracy when z = 0(1). 

The functions f(z) and fR(z) have the following asymptotic behavior for 

small and large values of z: 

rv5 + lh + oiz7) ' z<< 1 (lla) 

f(z) = 

1 9 
1 - - + 0(e-2z)      ,  z » 1 (lib) 

z 

z 1     11, 
- [1 + (a - -3)z + - (-32-a3-a)z2 + 0(z3)], z « 1     (12a) 

3-1  e2-3-3a    1 
fR(z) =  1 + —5-5— + 0(--)  ,  z » 1  ,  a ^ 0        (12b) 

az    a^z^      z5 

13    9      1 
- [1 - -- + --- 
3     3z  32z-    z 

[1 ~ ^ + ~02~2 +  0(~3)]  »  z»l, a = 0  ,  3^0   (12c) 



Equation (12c) only gives the correct limiting value of f(z) as z -»- <» when 3 - 

1 and this value of 3 does not satisfy Eq. (9); hence, we will no longer 

consider approximations with a = 0. 

Let 

e(z) := fR(z) - f(z) (13) 

denote the pointwlse error and use Eqs. (11) and (12) to obtain 

1  z2    1 ,      1 z3      u 
(a.  - -g)-- + (-32-a3-a+-)-- + 0(z4)  ,  z « 1 

3  3    3       5 9 

e(z) = (14) 

3-1 1  32-3-3ct    1 
(1 )- + ------- + 0(--)  ,  z » 1 

a  z    azz^      z3 

We see that the rate of convergence as z -*■ 0 can be improved from 0(z ) to 

0(z3) by selecting 
3 = 3a (15) 

while the rate of convergence as z ->- ^ can be improved from 0(l/z) to 0(1/z   ) 

by selecting 

3 = 1 + a (16) 

Both Eqs. (15) and (16) can be satisfied simultaneously by selecting a = 1/2 

and 3 = 3/2. 

Before deciding on either or both of Eqs. (15) and (16) we still must 

find bounds on a and 3 so that Eqs. (9) and (10) are satisfied.  It is 

slightly simpler to consider Eq. (10) first; thus, we differentiate Eq. (8) to 

obtain 
dfR  3 + 6az + az2(3-l) ,  . 
 - --To—-  .  z > 0 (17) 
dz      (3+3z+az-)2 

For df^/dz > 0, the polynomial 

p(z) = 3 + 6az + az2(3-i) (18) 



should not have any positive roots. It will have two negative roots If a > 0 

and 3 > 1 and two complex roots if a > 0 and 3 > l+3a or a < 0 and B < l+3a. 

For the reasons of accuracy expressed by Eqs. (15) and (16) we would like to 

be as close to a = 1/2 and 3 = 3/2 as possible. Hence, we will not consider 

the region where a < 0 and confine our attention to choices satisfying a > 0 

and B > 1. 

Finally using Eq. (8), condition (9) will be satisfied if 

1   3 + (B-3)z + (l+a-3)z2 

fR(z) -(!--)= s- 5;  >  0     ,     z  >  0 (19) 
z        z2(3+3z+ctz2) 

Since a and 3 are positive we want the polynomial 

p(z) = 3 + (3-3)z + (l+a-3)z2 (20) 

to have no positive roots.  p(z) will have two negative roots if 3 < 3 < 1+a 

and two complex roots if 

3 < -3 + 2/3(H-a) (21) 

The values of a and 3 that satisfy both Eqs. (9) and (10) are 

1 
-<a<3  ,  l<3<-3 + 2/3(l+a) 
3 

a > 3  ,  1 < 3 < 1+a (22) 

This region is shown shaded in Figure 2.  Note that the point a = 1/2, 3 = 

3/2, which improves accuracy for small and large values of z, fails to satisfy 

condition (10).  However, Figure 2 suggests that an effective alternative 

ight be to pick the point on the curve 3 = -3 + 2/3(l+a) that is closest to a 

= 1/2, 3 = 3/2.  This point is a = 0.5931, 3 = 1.3723 and a search shows that 

it is near the point which minimizes the maximum value of |e(z)|, for all z. 

m 



/3       - 

Figure 2.  Region of acceptable values of a and B (shaded) that 
satisfies equations (9) and (10). 
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In the examples of the next section we used a = 0.6 and 3 = 1.38 for which 

the maximum value of |e(z)l is 0.0115. 

NUMERICAL RESULTS 

The approximations f^Cz) and fR(z) and the exact function f(z) given by 

Eqs. (6), (8), and (1), respectively, were coded in FORTRAN and used in the 

series of numerical experiments described below. 

Equation (1) cannot be used for f(z) when z is near zero and it was 

replaced by the expansion (11a) for |z| < 0.01.  The FORTRAN Library function 

for tanh (z) was used in Eq. (1) when z was not small.  All calculations were 

performed in double precision arithmetic on either an IBM 3033 at the 

Rensselaer Polytechnic Institute or an IBM 4341 at the Benet Weapons 

Laboratary. 

In our first experiment, we evaluated f(z), f^(z), and f^Cz) for 1000 

values of z £ [0,100] and timed the results.  The normalized times recorded in 

Table 1 were averaged over several runs and include only the times to evaluate 

the functions and neither input/output nor supervisor state times.  Variations 

in times from run to run were less than two percent.  The results indicate 

that f^ took 35 percent and f^ took 49 percent less time to evaluate than f. 

The relative timing figures can be expected to vary significantly from 

computer to computer and even from compiler to compiler; however, the 

differences between the times to evaluate f^ and f are large enough so that 

savings should be achieved in most environments. 



TABLE 1.  RELATIVE COMPUTER TIMES TO EVALUATE THE APPROXIMATIONS f^iz) 

AND fR(z) AND THE EXACT FUNCTION f(z) FOR 1000 VALUES OF z 

ON 0 < z < 100. 

I        Method                   Time   j 

I Doubly Asymptotic 
I Approximation, Eq. (6)            0.508  | 

I Rational Approximation, 
I Eq. (8)                   !      0.654  | 

I Exact, Eqs. (1), (11a)             1.000  | 

TABLE 2.  MAXIMUM ERRORS AT STEADY STATE FOR EXAMPLE 1. 

i            i   Doubly   S   Lax 
j  p  |  X   | Asymptotic  1  Wendroff   1  Rational   I  Optimal 

6  1 0.75  | 0.204X10-1  1 0.159xl0-2  1 0.866xl0-3  1 O.ZSOxlO"13 1 

I 500 | 0.95  | O.ZOOxlO-2  1 0.235X10-1  1 0.705xl0-3  I O.ZOSxlO"11 1 

10 



In order to study variations in the computed solutions when the different 

approximations of f(z) are used we consider two boundary value problems having 

the form 

d2u  dF(u) 
e — = 0  , 0 < x < 1  , u(0) = A , u(l) = 0    (23) 
dx2   dx 

Since our motivation for performing the work described in this note Is to 

study exponentially weighted finite element schemes for transient problems-' we 

do not use the numerical method (3) but rather, we follow Osher" and consider 

the solution of (23) as the steady state limit of the following initial- 

boundary value problem 

3u  9F(u)    32u 
__ + = e~-  ,  0<x<l  ,  t > 0 (24a) 
81   8 x      8 x2 

A, x = 0 
u(0,t) = A  ,  u(l,t) = 0  ,  u(x,0) = (24b,c,d) 

0, 0 < x < 1 

Equations (24) are approximated by the following explicit difference scheme 

n+1    n n n n   n 
Ui   = U-L - X [(IHlXFt-Fi.i) + (l-SiXFu-i-Fi) 

n    n  n 
+ (eX/h)(Ui_1-2Ui+Ui+1)  ,  i = 1,2,...,N-1 (25a) 

n n o    ^» i-  ^ 
U0 = A  ,  UN = 0  ,  Ui = (25b,c,d) 

0, i = 1,2,... ,N 

n 
where U^  denotes the numerical approximation of u(ih,nAt), At is the time 

step, and 

X  = At/h (26) 

11 



The cell Reynolds number is still given by Eq. (5) with c defined as 

dF(u(x,t)) 
c(x,t) =   

du 
(27a) 

and 
n     n 

H    . Ui-i + Ut < o 

(27b) 
Xi =  (xi-i+x1)/2  ,  Ui-! + U! = 0 

xi-l  ,  (Ui-i+U-) > 0 

For reasons discussed in Flaherty and Mathon4 these choices of xi might be 

better than always using the center of the subinterval (xi-i.Xi). 

The explicit difference scheme will be stable to linear perturbations 

provided that (cf. Osher8 or Flaherty3) 

[%i 

We use 

X[c(xi,nAt) + 2e/hl < 1  ,  1 - 1,2,...,N, n > 0       (28) 

E := max|u(ih,nAt) - Ui| (29) 
l<i<N 

with n chosen large enough so that steady state has been reached, to measure 

errors. 

Example 1:  Consider the constant coefficient problem for Eq. (23) with 

F(u) = u,  c = 1,  A. = 1,  which has the exact solution 

,   -(l-x)/e 
1 - e 

u(x)  ----- 
1 - e-1/e 

(30) 

12 



The results of calculations when %i  in Eq. (25) was evaluated by the doubly 

asymptotic approximation (6), the rational approximation (8), the Lax-Wendrofl 

scheme (^ = X), and the optimal scheme (1) are presented in Table 2 for N - 

20, p - 6, X « 0.75, and N - 20, p - 500, X - 0.95.  The optimal scheme (1) is 

exact for this example.  The samll errors reported in Table 2 are due to the 

combined effects of roundoff and our failure to reach the steady state limit. 

As expected the rational approximation improves upon the results of the doubly 

asymptotic approximation and the improvement is greatest for p - 6.  The 

Lax-Wendroff solution oscillates when x is near unity. 

Example 2.  We consider the nonlinear Burgers' equation, F(u) - u /2 

c - u, A - tanh l/2e, for which the exact solution of Eq. (23) is 

u(x) - tanh(l-x)/2e (31) 

Results comparing the doubly asymptotic, rational, and optimal choices of ^ 

are shown in Table 3 for N - 20, p - h/e - 6, X - 0.75, and N - 20, p - 500, X 

- 0.95, and in Table 4 for c - 1/128, p - 1,2,4,8,16.  In Table 5 we show 

results for the error |Ui - u(ih,nAt)I at steady state and x = ih - 0.875, 

0.9375 for e = 1/128 and p = 1,2,4,8,16.  The solution obtained using the 

doubly asymptotic approximation had mesh oscillations for p - 8 and X - 0.96 

so this calculation was rerun with X - 0.48. 

Although accuracy is not as good for this nonlinear example, the results 

generally parallel our findings for the linear problem.  Table 5 shows that 

the rational and optimal choices of 5i are better than the doubly asymptotic 

choice at reducing the effects of numerical diffusion for cell Reynolds 

numbers in the range of 2 to 16. 

13 



TABLE 3.     MAXIMUM  ERRORS  AT  STEADY  STATE   TOR  EXAilPLE  2. 

T 

(5 

500 

0.75 

0.95 

Doubly 
Asymptotic 

"T 
0.124 

0.200x10 -2 

Rational 

0.761x10 

0.135xl0_ 

- 1 

Optimal 

-1 0.766x10 

0.100x10"2 

TABLE 4.  MAXIMUM ERRORS AT STEADY STATE TOR EXAtPLE 2 WITH e - 1/128, 

AN * DENOTES THAT X = 0.48 FOR THIS CASE. 

1    p 

1 
Doubly 

Asymptotic. 

~r 
Rational 

"T  r 

Optimal 

1     16 
1 ' ~    1 

0.96 0.605X10-1 
i 

0.330X10-1 
1 ! 

0.308X10-1   1 

S 0.96 0.117* 0.599x10"1 O.SOlxlO-1   1 

4 0.96 0.110 0.940x10"1 0.932X10-1   | 

1       2 0.6912 0.627xl0-1 0.627x10"1 0.618x10"1   | 

I        1 0.4608 0.156X10-1 0.157x10"1 0.156X10-1   | 

14 
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CONCLUS[ON 

We have shown that the rattcmal function approximation (8) is an 

alternative to the doubly asymptotic approximation (6) of f(z) that offers 

greater accuracy for about a 30 percent Increase In cost.  The approximation 

Is most useful for cell Reynolds numbers In the range of one to ten. 

16 
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